Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present updated results from our near-infrared long-baseline interferometry (LBI) survey to constrain the multiplicity properties of intermediate-mass A-type stars within 80 pc. Previous adaptive optics surveys of A-type stars are incomplete at separations <20 au. Therefore, an LBI survey allows us to explore separations previously unexplored. Our sample consists of 54 A-type primaries with estimated masses between 1.44 and 2.93M⊙and ages 10–790 Myr, which we observed with the Michigan Infra-Red Combiner-eXeter and Michigan Young Star Imager at Center for High Angular Resolution Astronomy instruments at the Center for High Angular Resolution Astronomy Array. We use the open source software CANDID to detect two new companions, seven in total, and we performed a Bayesian demographic analysis to characterize the companion population. We find the separation distribution consistent with being flat, and we estimate a power-law fit to the mass ratio distribution with index –0.13 and a companion frequency of 0.25 over mass ratios 0.1–1.0 and projected separations 0.01–27.54 au. We find a posterior probability of 0.53 and 0.04 that our results are consistent with extrapolations based on previous models of the solar-type and B-type companion population, respectively. Our results suggest that the close companion population to A-type stars is comparable to that of solar-type stars and that close companions to B-type stars are potentially more frequent, which may be indicative of increased disk fragmentation for stars ≳3M⊙.more » « less
-
Identification of a Turnover in the Initial Mass Function of a Young Stellar Cluster Down to 0.5 M JAbstract A successful theory of star formation should predict the number of objects as a function of their mass produced through star-forming events. Previous studies in star-forming regions and the solar neighborhood have identified a mass function increasing from the hydrogen-burning limit down to about 10MJ. Theory predicts a limit to the fragmentation process, providing a natural turnover in the mass function down to the opacity limit of turbulent fragmentation, thought to be near 1–10MJ. Programs to date have not been sensitive enough to probe the hypothesized opacity limit of fragmentation. We present the first identification of a turnover in the initial mass function below 12MJwithin NGC 2024, a young star-forming region. With JWST/NIRCam deep exposures across 0.7–5μm, we identified several free-floating objects down to roughly 3MJwith sensitivity to 0.5MJ. We present evidence for a double power-law model increasing from about 60MJto roughly 12MJ, consistent with previous studies, followed by a decrease down to 0.5MJ. Our results support the predictions of star and brown dwarf formation theory, identifying the theoretical turnover in the mass function and suggesting the fundamental limit of turbulent fragmentation to be near 3MJ.more » « less
-
Abstract The rate of technological innovation within aquatic sciences outpaces the collective ability of individual scientists within the field to make appropriate use of those technologies. The process of in situ lake sampling remains the primary choice to comprehensively understand an aquatic ecosystem at local scales; however, the impact of climate change on lakes necessitates the rapid advancement of understanding and the incorporation of lakes on both landscape and global scales. Three fields driving innovation within winter limnology that we address here are autonomous real‐time in situ monitoring, remote sensing, and modeling. The recent progress in low‐power in situ sensing and data telemetry allows continuous tracing of under‐ice processes in selected lakes as well as the development of global lake observational networks. Remote sensing offers consistent monitoring of numerous systems, allowing limnologists to ask certain questions across large scales. Models are advancing and historically come in different types (process‐based or statistical data‐driven), with the recent technological advancements and integration of machine learning and hybrid process‐based/statistical models. Lake ice modeling enhances our understanding of lake dynamics and allows for projections under future climate warming scenarios. To encourage the merging of technological innovation within limnological research of the less‐studied winter period, we have accumulated both essential details on the history and uses of contemporary sampling, remote sensing, and modeling techniques. We crafted 100 questions in the field of winter limnology that aim to facilitate the cross‐pollination of intensive and extensive modes of study to broaden knowledge of the winter period.more » « less
-
Abstract The circular dichroism (CD) of photoelectrons generated by near-infrared (NIR) laser pulses using multiphoton ionization of excited He+ions in the 3p(m= +1) state is investigated. The ions were prepared by circularly polarized extreme ultraviolet (XUV) pulses. For circularly polarized NIR pulses co- and counter-rotating relative to the polarization of the XUV pulse, a complex variation of the CD is observed as a result of intensity- and polarization-dependent Freeman resonances, with and without additional dichroic AC-Stark shifts. The experimental results are compared with numerical solutions of the time-dependent Schrödinger equation to identify and interpret the pronounced variation of the experimentally observed CD.more » « less
-
Climate change is reducing winter ice cover on lakes; yet, the full societal and environmental consequences of this ice loss are poorly understood. The socioeconomic implications of declining ice include diminished access to ice-based cultural activities, safety concerns in traversing ice, changes in fisheries, increases in shoreline erosion, and declines in water storage. Longer ice-free seasons allow more time and capacity for water to warm, threatening water quality and biodiversity. Food webs likely will reorganize, with constrained availability of ice-associated and cold-water niches, and ice loss will affect the nature, magnitude, and timing of greenhouse gas emissions. Examining these rapidly emerging changes will generate more-complete models of lake dynamics, and transdisciplinary collaborations will facilitate translation to effective management and sustainability.more » « less
-
Abstract A primary goal of exoplanet science is to measure the atmospheric composition of gas giants in order to infer their formation and migration histories. Common diagnostics for planet formation are the atmospheric metallicity ([M/H]) and the carbon-to-oxygen (C/O) ratio as measured through transit or emission spectroscopy. The C/O ratio in particular can be used to approximately place a planet’s initial formation radius from the stellar host, but a given C/O ratio may not be unique to formation location. This degeneracy can be broken by combining measurements of both the C/O ratio and the atmospheric refractory-to-volatile ratio. We report the measurement of both quantities for the atmosphere of the canonical ultrahot Jupiter WASP-121 b using the high-resolution (R= 45,000) IGRINS instrument on Gemini South. Probing the planet’s direct thermal emission in both pre- and post-secondary eclipse orbital phases, we infer that WASP-121 b has a significantly superstellar C/O ratio of and a moderately superstellar refractory-to-volatile ratio at stellar. This combination is most consistent with formation between the soot line and H2O snow line, but we cannot rule out formation between the H2O and CO snow lines or beyond the CO snow line. We also measure velocity offsets between H2O, CO, and OH, potentially an effect of chemical inhomogeneity on the planet dayside. This study highlights the ability to measure both C/O and refractory-to-volatile ratios via high-resolution spectroscopy in the near-IRHandKbands.more » « less
-
Free-electron lasers (FELs) are the world's most brilliant light sources with rapidly evolving technological capabilities in terms of ultrabright and ultrashort pulses over a large range of photon energies. Their revolutionary and innovative developments have opened new fields of science regarding nonlinear light-matter interaction, the investigation of ultrafast processes from specific observer sites, and approaches to imaging matter with atomic resolution. A core aspect of FEL science is the study of isolated and prototypical systems in the gas phase with the possibility of addressing well-defined electronic transitions or particular atomic sites in molecules. Notably for polarization-controlled short-wavelength FELs, the gas phase offers new avenues for investigations of nonlinear and ultrafast phenomena in spin-orientated systems, for decoding the function of the chiral building blocks of life as well as steering reactions and particle emission dynamics in otherwise inaccessible ways. This roadmap comprises descriptions of technological capabilities of facilities worldwide, innovative diagnostics and instrumentation, as well as recent scientific highlights, novel methodology, and mathematical modeling. The experimental and theoretical landscape of using polarization controllable FELs for dichroic light-matter interaction in the gas phase will be discussed and comprehensively outlined to stimulate and strengthen global collaborative efforts of all disciplines. Published by the American Physical Society2025more » « less
-
Abstract We present preliminary results from our long-baseline interferometry (LBI) survey to constrain the multiplicity properties of intermediate-mass A-type stars within 80 pc. Previous multiplicity studies of nearby stars exhibit orbital separation distributions well fitted with a lognormal with peaks >15 au, increasing with primary mass. The A-star multiplicity survey of De Rosa et al., sensitive beyond 30 au but incomplete below 100 au, found a lognormal peak around 390 au. Radial velocity surveys of slowly rotating, chemically peculiar Am stars identified a significant number of very close companions with periods ≤5 days, ∼0.1 au, a result similar to surveys of O- and B-type primaries. With the improved performance of LBI techniques, we can probe these close separations for normal A-type stars where other surveys are incomplete. Our initial sample consists of 27 A-type primaries with estimated masses between 1.44 and 2.49 M ⊙ and ages 10–790 Myr, which we observed with the MIRC-X instrument at the CHARA Array. We use the open-source software CANDID to detect five companions, three of which are new, and derive a companion frequency of 0.19 − 0.06 + 0.11 over mass ratios of 0.25–1.0 and projected separations of 0.288–5.481 au. We find a probability of 10 −6 that our results are consistent with extrapolations based on previous models of the A-star companion population over the mass ratios and separations sampled. Our results show the need to explore these very close separations to inform our understanding of stellar formation and evolution processes.more » « less
An official website of the United States government
